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NU-CONFIGURATIONS IN TILING THE SQUARE 

ANDREW BREMNER AND RICHARD K. GUY 

ABSTRACT. In order to tile the unit square with rational triangles, at least four 
triangles are needed. There are four candidate configurations: one is conjec- 
tured not to exist; two others are dealt with elsewhere; the fourth is the "nu- 
configuration," corresponding to rational points on a quartic surface in affine 
3-space. This surface is examined via a pencil of elliptic curves. One rank-3 
curve is treated in detail, and rational points are given on 772 curves of the 
pencil. Within the range of the search there are roughly equal numbers of odd 
and even rank and those of rank 2 or more seem to be at least 0.45 times as nu- 
merous as those of rank 0. Symmetrical solutions correspond to rational points 
on a curve of rank 1, which exhibits an almost periodic behavior. 

1. INTRODUCTION 

The problem of tiling an integer-sided square with integer-sided triangles 
is considered in [6]. This is clearly equivalent to the problem of tiling the 
unit square with rational-sided ("rational") triangles. A dissection into two 
such triangles is trivially impossible, and it is known (see [6] for a proof and 
references) that a dissection into three rational triangles is also impossible. 

Accordingly, the first interesting case is a dissection into four rational trian- 
gles. Figure 1 shows the four candidates for such a configuration, named respec- 
tively chi-, delta-, kappa-, and nu-configurations. A rational chi-configuration is 
conjectured to be impossible. A detailed discussion of how to obtain "all" delta- 
and kappa-configurations is given in [1]. Here we give a parallel discussion of 
nu-configurations. 

In Figure 1 (v), take OB, OA as axes and U the point (1, 1) . If P is the 
point (X, 1) and Q the point (X + Y, 0), then the rationality of the lengths 
OP, PQ, Q U immediately implies that 

X2 + 1 = - 

(1) Y2 + 1 = - 

(1 - X- y)2 + 1 = O. 

We call a rational number, x, satisfying x2 + 1 - O, a rectangular number. 
Then it is clear from (1) that nu-configurations are characterized by solutions 
of the equation 

(2) X+ Y+Z = 1 
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FIGURE 1. Four candidates for a tiling of the square 
with four rational triangles 

in which X, Y, Z are rectangular numbers. We investigate (2) in the manner 
of Bremner and Guy [1]. 

2. THE PARAMETERS (r, s), (u, v), (m, n) 

In (2), there is no loss of generality in putting 

r2-s2 uy 2-22 m2-n2 

2rs ' 2uv ' 2mn 
with r I s (r prime to s), u I v, and m I n, so that we seek integer 
solutions mr, n, r, s, u, v to the equation 

(3) mnuv(r2 _ s2) + mnrs(u2 - V2) + rsuv(M2 - 2mn - n2) = 0. 

Geometrically, (3) represents a quartic surface in affine three-dimensional space 
with coordinates m/n, r/s, u/v. It seems an unlikely hope that there is 
any straightforward description of all the rational points on this surface. In 
order to obtain results, we shall assume, much as in [1], that the ratio m/n is 
predetermined, so that (3) may be considered as an elliptic curve over Q(mr/n) . 

3. SYMMETRICAL NU'S 

The special case where r/s = mr/n, so that Figure 1 (M) is symmetric under 
rotation through 7r, is considered in ?7 of [6], so we merely summarize the 
results. The solutions correspond to rational points on the curve 

(4) T2 = a(a2?+ 6a + 4) 

which has rational rank 1, with a generator P = (-1, 1) of infinite order. The 
solutions (r: s; u: v) corresponding to P, 2P, 3P, and 4P are (1:0; 0: 1), 
(-3: 4; 3: 2), (75: 52; 50: 39), and (425: - 5928; 221: 5700). The first is 
degenerate, the second and third correspond to the proper tilings of Figures 2 
and 3, and the fourth to the improper tiling of Figure 4. 

All symmetrical nu-configurations are given by a single infinity of solutions 
satisfying the recurrence relations 

rn+1 Sn+1 = rn(2(rn -sn)un -snvn): - sn(2rnun -Snvn) 

Un+1 Vn+1 = vn(2(rn -sn)un -snvn): un(2rnun - snvn). 

It was observed in Table 7.1 of [6] that these solutions are almost periodic, 
with a period close to 282. This is explained as follows. It is well known that 
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FIGURE 4. n = 4 

an elliptic curve over C is isomorphic to the quotient of C by some lattice A, 
the isomorphism being given by the Weierstrass p-function, ( V(z), V'(z)) F > z 
mod A; and the points of the curve over C are in one-to-one correspondence 
with the points of the fundamental parallelogram of the lattice (Figure 5), where 
w1I and w92 are known as the periods of the curve. 

For the curve (4), then, 0 corresponds to the point at infinity o, and w_)2 
is actually real. Further, as a point Q traverses the right-hand branch of the 
curve (containing (0, 0) ), then the associated parameter z of the p-function 
traverses the edge of the fundamental parallelogram from 0 to w02 (containing 
cw2 ). It follows that the associated parameter z of Q is of type awe)2, 0 < 

a < 1. Suppose now that a/b is a good rational approximation to the real 
number a. Then Q will display a 'period' of b, in the sense that bQ is close 
to o. But a is simply determined as the ratio of the integrals 

`/ -/2 0X dx 
fh:eoia; 2jC . 

(the denominator here being the real period wJ2). 

l~~~ 2 

? 
1 I - - - - - - - - - - - - - - - - - - - - 

FIGURE 5. Fundamental parallelogram of the lattice 
with periods w1l, w)2 
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Performing the integration (kindly computed by John Hebron) for the point 
Q = 2P = (9/4, 57/8), we find 

a = 0.2411328840030960787192512 .... 

In order to find good rational approximations to a, compute the continued 
fraction. The partial quotients are 

4, 6, 1, 3, 1, 26, 7, 2, 1, 2, 1, 62, 9, 4, 5, 1, 1, 50, 2, 2, 

The large partial quotients 6, 26, 62, 50, ... ensure that the denominators of 
the convergents obtained by truncating them, namely 

1 34 74165 1980618265 
4' 141' 307569' 8213804074' 

give very good 'periods' of 2P. It follows that 4, 282, 615138, 8213804074 
give very good estimates for a 'period' of P. 

It is not clear to us whether the large partial quotients in the above continued 
fraction are simply a curiosity. For a continued fraction without large partial 
quotients, there would be no obvious 'period' of small size. A similar example 
is worked by Don Zagier in Method 3 of [12]. 

4. FixING (m, n) LEADS TO AN ELLIPTIC CURVE 

In order to find solutions containing a given slope, (m, n), write equation 
(3) as a quadratic in r and s: 

r2+2s (2-v + m2-2rmn-n2) 2 
2uv 2mn 

and r/s will be rational just if the discriminant is square: 

u2-v 2 m m2-2mn-n2 2 

(5) 2uv + 2mn +la. 

Write u/v = U and 

m2 - 2mn - n2 
(6) 2mn K 

so that there is a birational map between (5) and the elliptic curve 

(7) E r2 = C(a2 + (K2+ 2)a + 1) 

given by 

a = Ua?+ (U2+2KU- 1), r= U(a+ 1)+ K(J, 

with inverse 
T-KC ~ T+KU K 

U-= , + I , 2a a+ 1 

There is a 2-isogeny, v', between the curve (7) and the curve 

(8) E': T2 = S(S-K2)(S-(K2 + 4)) 

given by 

(9) (S, T) = ["(5, t) = ( 2 
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The corresponding isogeny v: E' -* E, where vv' is multiplication by 2 on 
E, is given by 

(10) (a,z)=v(S,T)=~ ( 
2 1 K2(K 2+4)lN 0 0) (a, T) = V(S' T) = 42 [1- S2 ]T) 4S2 '8[ 

For terminology and details of the calculation of the rank of E (and E') over 
the field k = Q(m/n), we refer the reader to Bremner and Guy [1]. Here we 
simply compute the groups GQ and G> of v-covers of E, and v'-covers of 
E', which actually possess points defined over k. Then the rank g of E can 
be determined from the relation 

29+1 = [GQ][G> ]/2. 

Consider first the curve (7), which, by putting A = m/n in (6), we may write 
in the form 

(1) Ir2 = o(U2 + (4 -4A1 + 10A2 + 4A+ I)a + 16A4). 

The v-covers of (11) are obtained in the classical manner by putting a = 
6a2/b2, with 6, a, b E Z[A], 6 squarefree, a 1 b. This gives 

(12) (52a4 + (A4 - 4A1 + I022 + 4. + I)c5a2b2 + I6A4b4 = 6C2. 

The elements of the group of v-covers of E are in one-one correspondence with 
the curves (12). For such a cover to be locally solvable, it is clearly necessary 
that a divide 16A4 , and a squarefree forces the only possibilities for a to be 

(13) = 1,?2, , 2A. 

Rewrite (12) as 

(14) [26a2 + (A4 - 4A1 + I0j2 + 4A + I)b2]2 
_ (A4 - 4A2 + 18A2 + 4) + 1)(A2 - 2).- 1)2b4 = 45C2. 

Suppose that a is a quadratic nonresidue modulo the polynomial 

p(A) =)4- 4A+ 18A.2+4).+ 1. 

Then (14) forces 
2da2 - 8)2b2 b c mod p(A). 

In particular, a2 _= 4A2 b2, so that a -b 0 O mod p(A), a contradiction. 
Accordingly, for local solvability, a must be a quadratic residue modulo 

p(g) - 
Let 0 denote a root of p(A). Then 6 is a square mod p(A) if and only if 

(0) is a square in Q(0). 
Take 0 = 1+2i+ -2 + 4i. We claim that the possibilities a = +2, +A, +2) 

from the list (13) contradict the above local criterion. Since -1 belongs to 
Q(0)2, it suffices to show that 2, 0, and 20 do not. Consider, in Q(0), the 
first-degree prime ideal factor p5 of the principal ideal generated by 5, for which 
i _ 2 and 0 1. If either 2 or 20 were a square in Q(0), it would now follow 
that 2 is a square mod p5, which is impossible. 

Similarly, consider the first-degree prime ideal P13(0) of the ideal generated 
by 13, for which i-8 and 0 2. If 0 were a square in Q(0), it would imply 
that 2 is a square mod Pi 3, which is also impossible. 
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We conclude that the only possibilities for 3 in the list (13) are 3 = I1; 
and there exist respective global points given by (a, b, c) = (1, 0, 1) and 
(2A, 1, 2A(42 - 2) - 1)) . Hence [G* ] = 21 

In a similar way, consider the curve (8) in the form 

(15) T2 S(S-_ (-2 - 2-1)2)(S-(.4-4A3 + 182 +?4)+ 1)) 

and put S - AA2 /B2 , with A, A, B E Q[A], A squarefree, A I B. This gives 

(16) (AA2 _(2 - 2A - 1)2B2)(AA2 _ (A4 - 4 + 18A2 + 4A + I)B2) = AC2 

and, for local solvability of (16), A must divide 

(A2 - 2) - 1)2(A4 - 413 + 18A2 + 4? + 1); 

it is also clear that both the leading coeffcient and the constant term in A must 
be positive. 

Hence, there are just the possibilities 

A= 1 and A=)A4 -4A3+18A2+4.+ 1, 

with respective global points (A, B, C) = (1, 0, 1) and (1, -1, 0) . So [G>] 
-21 

Finally, the rank g satisfies 

2g+2 = [G*, ][G] 

and accordingly g = 0. So numerical instances of the nu-configuration may 
be less common than the delta-configurations of Bremner and Guy [1]. But we 
shall see in ? 10 (in the Supplement at the end of this issue) that, as often as 
not, the ranks for specific slopes are positive. And in the next section we find 
an infinite family of parametrized nu-solutions. 

5. FAMILIES OF CURVES OF RANK ONE 

Take the ratios m/n, r/s, u/v to satisfy n = s = v. Then (3) becomes 

n2(mr + ru + um) + 2nmru - mru(m + r + u) = 0 

and accordingly, a solution is furnished by setting mr + ru + um = 0. There 
results 

mr m 2+ mr + r2 
u 

mmr 
n 2(m + r) 

leading to the parametrization 

m ,u2,ut+G1) r _ 2G,u+l1) u _ _2,u 

From this solution we may generate infinitely many further solutions in the 
standard manner, as follows. Set 

m - 2/(/ + 1) 

n12 -i U+,1 
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and work over the field Q(u). From (6), K now takes the form 

K 
4 

#+ 28 3+ 7y + 6y+ I 
4,u(,u +1)(,U2 +,u + 1) 

From the values (17) and the maps to the curve (7) we see that the curve 
possesses the Q(,u)-point 

(18) P _ (or ) = 4,u(,u + 1)2_ (2,u +?1) (u4 + 2,u3+ 7U2 + 6,u + 1)) 

We have verified that the rank of E defined over Q(,u) is equal to one, and it 
seems plausible that the point P at (18) is indeed a generator for the group of 
points of E defined over Q(,u), although this has not been specifically checked. 
It is, however, easy to see that P is of infinite order, and accordingly, the 
points NP, N E N, furnish an infinite family of examples of parametrized 
nu-solutions. The case N = 2, for example, leads to the solution 

u (,U + 1)(,U2 +,U - 1)2(,U4 + 2_u3 + 7_U2 + 2,u + 1) 
v 2u(2, + 1)(u2 + u + 1)(u4 + 2,3 + 7,2 + lu + 5)' 

r 2(,u+ 1)(2,u+ 1)(Gu2?+u+ 1)(Gu4+2,i3+7,i2+2,u+ 1) 
s ,u(,u2 + ,u - 1)2(,u4 + 2,u3 + 7,u2 + 10,u + 5) 

Another infinite family of parametrized nu-solutions is given by 

m j2 + 1 r (2 -2A-2) u _ (22+1) 
n i(y2 --2,+?2)' s 2j2-2i-u1 ' v 2u2 -2u- I 

and may be handled in a similar manner. 
Sections 6-10 of this paper appear in the Supplement at the end of this issue. 
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